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a b s t r a c t

This article presents the design and modeling techniques and design guidelines, and reveals the actual
working mechanism of acoustic metamaterial plates for elastic wave absorption and structural vibration
suppression. Each of the studied metamaterial plates is designed by integrating two (or one) isotropic
plates with distributed discrete mass-spring-damper subsystems that act as local vibration absorbers.
For an infinite metamaterial plate, its stopband is obtained by dispersion analysis on an analytical unit
cell. For a finite metamaterial plate with specific boundary conditions, frequency response analysis of its
full-size finite-element model is performed to show its stopband behavior, and the stopband behavior is
further confirmed by transient analysis based on direct numerical integration of the finite-element
equations. Influences of the vibration absorbers' local resonant frequencies and damping ratios and the
plate's damping, boundary conditions, and natural frequencies and mode shapes are thoroughly
examined. The concepts of negative effective mass and spring and acoustic and optical wave modes
are explained in detail. The working mechanism of acoustic metamaterial plates is revealed to be based
on the concept of conventional vibration absorbers. An absorber's resonant vibration excited by the
incoming elastic wave generates a concentrated inertial force to work against the plate's internal shear
force, straighten the plate, and attenuate/stop the wave propagation. Numerical results show that the
stopband's location is determined by the local resonant frequency of absorbers, the stopband's width
increases with the (absorber mass)/(unit cell mass) ratio, and increase of absorbers' damping
significantly increases the stopband's width and reduces low-frequency vibration amplitudes. However,
too much damping may deactivate the stopband effect, and the plate's material damping is not as
efficient as absorbers' damping for suppression of low-frequency vibrations.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

After being proposed in 1968 [1], electromagnetic metamaterials
with negative permittivity and permeability have been known for
many years. In recent years some man-made materials with negative
permeability were even experimentally verified [2]. Although meta-
materials are made of conventional materials such as metal and
plastic, they can exhibit unique properties which have not been
found in nature. Famous properties of electromagnetic metamaterials
include negative refractive indices [3], invisibility [4,5], and inverse
Doppler effect [6]. These unique properties of electromagnetic
metamaterials result from their designed periodic microstructures
rather than chemical reactions during manufacturing. The shape,
size, orientation and arrangement of the microstructures affect the
transmission of light and create unnatural, unconventional material
properties. Recently another type of metamaterials called acoustic
metamaterials have been under widespread investigation [7–10]. An

acoustic metamaterial structure can attenuate/stop or guide an
elastic wave propagating in it along a desired path by employing
the resonance between the integrated local microstructures and the
propagating wave. For example, seismic waveguides are an impor-
tant application of acoustic metamaterials. Earthquakes often cause
dangerous elastic waves propagating in structural systems [11]. Based
on characteristics of different seismic waves, Kim and Das proposed a
novel seismic attenuator made of metamaterials [12].

Intensive studies on acoustic metamaterials began after the exis-
tence of acoustic metamaterials was analytically and experimentally
verified [7]. Early studies on acoustic metamaterials focused on
analysis of dispersion and stopband of simple mass-spring lattice
structures because of easy modeling and manufacturing. In 2003 the
phononic stopbands of 1-D and 2-D mass-spring lattice structures
with two different types of working units were extensively investi-
gated [13]. Influences of boundaries, viscous damping and imperfec-
tions were studied by analyzing a 1-D wave filter and a 2-D wave
guide. Jensen concluded that the stopband of 1-D and 2-D structures
based on type-1 working units was insensitive to damping and small
imperfection, whereas the stopband of 2-D structures based on type-2
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working units was almost eliminated by strong damping. In 2003
different types of mechanical lattice structures with stopbands and the
process of designing a lattice system with prescribed stopbands were
proposed [14]. In 2007 the effect of attached mass-spring subsystems
on a rigid body was investigated [15]. It was assumed that the
attached masses were unknown to the observer and a dynamic
effective mass of the rigid body was derived from amodified Newton's
second law. They showed that the effective mass (called p-mass) was a
function of vibration frequency and could be complex and huge near
resonances. In 2008 the negative effective mass in a one-dimensional
(1D) mass-spring system was experimentally confirmed [16]. A mass-
spring unit was inserted into each subsystem and the subsystems
were connected to each other by springs with different spring
constants. The experiments were performed on an air track and CCD
cameras were used to capture the motions of subsystems.

Although lattice structures with masses lumped at nodal points
are easy to model, continuum structures like bars, beams and
plates are more commonly used in real applications. In fact, the
propagation of elastic waves in composite continuum structures is
a traditional topic in material physics and acoustics. In 1994 the
elastic wave propagation in infinite plates with periodic cylindrical
inclusions was studied [17]. Unfortunately, the adopted plate
theory based on continuum mechanics could not accurately model
the local resonance of the attached microstructures. In 1998 a type
of 2-D composite structures manufactured by inserting Duralumin
cylindrical fibers into an epoxy matrix was proposed [18]. Experi-
mental transmission spectra showed two stopbands within
55–85 kHz and 115–125 kHz for a finite-size sample with a square
array of fibers. In 2008 a 1-D ultrasonic metamaterial beam
showing simultaneously negative dynamic mass density and
Young's modulus was reported [19]. The metamaterial beam was
constructed by attaching Helmholtz resonators to an elastic beam.
By treating the elastic beam and the Helmholtz resonators as a
whole, finite element analysis using solid elements was con-
ducted. The model was then improved by using parallel-coupled
Helmholtz resonators [20]. However, the attached Helmholtz
resonators need to be treated separately if accurate results are
desired. In 2011 a plate model with mass-spring microstructures
attached inside cavities was proposed [21]. Instead of using the
traditional continuum mechanics theory to model the plate, they
proposed a microstructure continuum theory that linearly extra-
polated the spring–matrix interface points' displacements to
represent displacements of the plate. This approach inappropri-
ately assumed the displacements on the plate to be spatially linear
and was not able to provide accurate solutions for the plate. In
addition, the transverse motion of the plate was also unreasonably
neglected. In 2010 a metamaterial bar composed by a hollow
longitudinal bar with mass-spring subsystems attached inside was
introduced [8]. Because the extended Hamilton principle [22] was
used to model the whole integrated system, the so-obtained
coupled system equations can provide accurate solutions of the
metamaterial bar. Dispersion analysis and finite-element analysis

showed that a stopband was created by the inertial forces of the
attached subsystems and the stopband could be tuned by chan-
ging the resonant frequencies of the subsystems. A similar
approach was taken to analyze a metamaterial beam manufac-
tured by attaching translational and rotary inertias to an elastic
beam [9]. Because shear deformation and rotary inertias can
significantly affect propagation of high-frequency elastic waves
within a beam, Timoshenko's beam theory and influences of rotary
inertias were included in their modeling. Finite element analysis
showed that a tunable stopband could be created by the attached
inertias. However, translational inertias are far more efficient than
rotary inertias for creating the stopband.

Possible applications of metamaterial plates are far more than
those of metamaterial beams because structures are often majorly
covered by plates with only few supporting beams inside. Poten-
tial applications of metamaterial plates include protection of
important building structures (e.g., public administration offices,
private office buildings, school buildings, and museums) during
earthquakes, noise reduction for residential halls in busy cities and
houses beside highways, etc. However, high-fidelity modeling and
analysis of metamaterial plates is more challenging than that of
metamaterial beams because of the increased order of dimension.

The objective of this work is to extend the concept of vibration
absorbers to design acoustic metamaterial plates with wide stopbands
to attenuate/stop high-frequency propagating waves and suppress
low-frequency standing waves of plates. High-fidelity finite-element
modeling is presented, and numerical analysis is performed to develop
design guidelines. Moreover, the concepts of negative mass and
stiffness are examined in detail, and influences of the absorbers'
resonant frequencies and damping ratios and the plate's material
damping and natural frequencies and mode shapes are investigated.

2. Concept of negative effective mass and stiffness

Electromagnetic metamaterials are based on negative permit-
tivity and permeability to have unique unnatural material proper-
ties. Similarly, acoustic metamaterials are based on negative mass
and stiffness to have unique unnatural material properties. To
better understand the concept of negative mass and stiffness, we
consider 2-DOF (degree of freedom) mass-on-mass and mass-on-
spring vibration absorbers.

As shown in Fig. 1(a), the lumped mass m2 is connected to the
lumped mass m1ð4m2Þ by a spring with a spring constant k. m1 is
subject to a force f ¼ f 0e

jωt , where j�
ffiffiffiffiffiffiffiffi
�1

p
and ω is the excitation

frequency. Equations of motion for this 2-DOF mass-on-mass
vibration absorber are

m1 0
0 m2

" #
€u1

€u2

( )
þ k �k

�k k

� � u1

u2

( )
¼ f

0

� �
; f ¼ f 0e

jωt ð1Þ

where u1 and u2 are displacements of m1 and m2. If we define
ω1 �

ffiffiffiffiffiffiffiffiffiffiffiffi
k=m1

p
and ω2 �

ffiffiffiffiffiffiffiffiffiffiffiffi
k=m2

p
, the frequency response functions

u2

f = f0e jωt

f = f0e jωt
u1

m1

m2

k u1 2
k1

2
k1

k2 u2

m2

ground

Fig. 1. Two-DOF vibration absorbers: (a) mass-on-mass absorber, and (b) mass-on-spring absorber.
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(FRFs) UiðjωÞ of mi can be obtained from Eq. (1) as

U1 jωð Þ ¼ ω2
2�ω2

ω2 ω2�ω2
1�ω2

2

� � f 0
m1

ð2Þ

U2 jωð Þ ¼ ω2
2

ω2 ω2�ω2
1�ω2

2

� � f 0
m1

ð3Þ

Eqs. (2) and (3) show that, if ω is within the open frequency range
0;ω2ð Þ, m1 and m2 move in phase and this is the so-called acoustic
mode. On the hand, if ω is within ω2; þ1ð Þ, m1 and m2 are 1801
out of phase and this is the so-called optical mode. If m2 and the
spring are hidden inside the mass m1, the effective mass ~m1 of the
single-DOF system can defined and obtained to be

~m1 �
f
€u1

¼ 1þ ω2
1

ω2
2�ω2

 !
m1 ð4Þ

Eq. (4) shows that ~m1 is a function of ω. If ω�ω2, ~m1-71 and
u1 � 0. This is because the force exerted on m1 bym2 balances with
the excitation force and all the external energy is absorbed by m2.

If ω is within the frequency band ω2;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
1þω2

2

q	 

, the effective

mass is negative and m1 and m2 vibrate in an optical mode. Note
that the negative effective mass occurs within a frequency band
that is right at the higher side of the local resonant frequency ω2 of
the attached mass-spring subsystem.

Similar to the mass-on-mass system, Fig. 1(b) presents a mass-
on-spring system. A massless rigid plate is connected to the ground
by two springs having a spring constant k1=2 and is excited by a
force f ¼ f 0e

jωt . The lumped mass m2 is suspended below the rigid
plate by a spring k2. The displacements of the plate and m2 are
represented by u1 and u2. According to Newton's second law,
equations of motion for this mass-on-spring vibration absorber are

0 0
0 m2

" #
€u1

€u2

( )
þ

k1þk2 �k2
�k2 k2

" #
u1

u2

( )
¼ f

0

� �
; f ¼ f 0e

jωt ð5Þ

From Eq. (5) we obtain the frequency response functions UiðjωÞ of
mi as

U1 jωð Þ ¼ ω2
2�ω2

k1ω2
2� k1þk2ð Þω2

f 0 ð6Þ

U2 jωð Þ ¼ ω2
2

k1ω2
2� k1þk2ð Þω2

f 0 ð7Þ

where ω2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=m2

p
is the local resonance frequency of the

suspended mass-spring subsystem. If the suspended mass-spring
subsystem is invisible to the observer, the 2-DOF system becomes a
single-DOF system subject to a sinusoidal excitation force. Then, the
effective spring constant ~k1 of the new system can be defined and
obtained as

~k1 �
f
u1

¼ k1þ
k2

1� ω2=ω
� �2 ð8Þ

Eq. (8) indicates that ~k1 is a function of ω. When ω�ω2, u1 � 0 based
on Eq. (6), i.e., the external excitation force is totally balanced out by
the suspended mass-spring subsystem. Meanwhile, ~k1-71 accord-
ing to Eq. (8). If ω4ω2, the plate and m2 are 1801 out of phase, i.e., an
optical mode. Otherwise, when ωoω2, the plate and m2 moves in
phase, i.e., an acoustic mode. Moreover, when ω is within the frequency

range ω2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1=ðk1þk2Þ

p
;ω2

	 

, the effective stiffness is negative. Note

that different from the mass-on-mass system, the negative effective
stiffness of this mass-on-spring system happens in a frequency range
right at the lower side of the local resonant frequency ω2 of the
attached mass-spring subsystem.

3. Dispersion analysis and elastic wave absorption

Based on the 2-DOF mass-on-mass vibration absorber, a meta-
material plate is proposed in Fig. 2. The metamaterial plate consists
of two parallel isotropic plates and small mass-spring vibration
absorbers integrated between the two plates. The vibration absor-
bers are mass-spring subsystems with mass and spring constants
tuned to desired values. Except the clamped-free-free-free bound-
ary conditions shown in Fig. 2, other types of boundary conditions
can be assigned and studied. This kind of metamaterial plates is
designed to guide elastic waves along a designated path within the
plate. If damping is added to each vibration absorber, the guided
waves can be attenuated/absorbed during their propagation.

A single-frequency elastic wave propagates with a specific phase
velocity in a dispersive material. Dispersion analysis provides impor-
tant information about how a single-frequency wave propagates
along a certain direction in an infinite plate. If a plate is designed so
that waves within a broad frequency band cannot propagate effi-
ciently, then a wide-band wave absorber is designed. Because the
mass-spring subsystems are periodically distributed over the plate, a
unit cell (see Fig. 3) can be used to study by dispersion analysis how
waves propagate in a plate without considering boundary conditions
and size effects. A unit cell consists of two rectangular isotropic plates
and a mass-spring subsystem inbetween. Its edge lengths along x
and y directions are 2a and 2b, respectively. Here we assume that the
two springs have the same spring constant k, the absorber mass is
2m, and the top and bottom plates move in phase and have the same
magnitude of displacement. Considering this symmetric property,
one can analyze only the upper half of the unit cell with an absorber
mass of m and a spring constant k.

First we define moment resultants M1, M2 and M6 as ([22])

M1 �
Z

σ11zdz¼ �D wxxþνwyy
� �

; M2 �
Z

σ22zdz¼ �D νwxxþwyy
� �

M6 �
Z

σ12zdz¼ �D 1�νð Þwxy; D� Eh3

12 1�ν2
� � ð9Þ

where σ11 and σ22 are normal stresses along x and y directions,
σ12 is the in-plate shear stress and w is the vertical displacement of
the upper plate. The plate thickness, Poisson's ratio, Young's
modulus and flexural rigidity are denoted by h; ν; E and D,
respectively. Then the kinetic energy δT , elastic energy δΠ and
non-conservative work δWnc done by the external loads can be
represented as

δT ¼
Z a

�a

Z b

�b
�ρh €wδw
� �

dxdy ð10Þ

δΠ ¼
Z a

�a

Z b

�b

Z h=2

�h=2
σ11δε11þσ22δε22þσ12δε12ð Þdzdxdy

¼
Z a

�a

Z b

�b
�M1xxδw�M2yyδw�2M6xyδw
� �

dxdy

Fig. 2. A metamaterial plate with sping-mass subsystems.
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þ
Z b

�b
�M1δwxþðM1xþM6yÞδw�M6δwy
� �x ¼ 0�

x ¼ �a

n
þ �M1δwxþðM1xþM6yÞδw�M6δwy
� �x ¼ a

x ¼ 0þ

o
dy

þ
Z a

�a
�M2δwyþðM2yþM6xÞδw�M6δwx
� �y ¼ 0�

y ¼ �b

n
þ �M2δwyþðM2yþM6xÞδw�M6δwx
� �y ¼ b

y ¼ 0þ

o
dx ð11Þ

δWnc ¼
Z b

�b
�M1δwxþQ1δw�M6δwy
� �x ¼ a

x ¼ �ady

þ
Z a

�a
�M2δwyþQ2δw�M6δwx
� �y ¼ b

y ¼ �bdxþkðu�w0Þδw0

Q1 ¼M1xþM6y;Q2 ¼M2yþM6x
� � ð12Þ
The vertical force resultants are represented by Q1 and Q2.
Substituting Eqs. (10)–(12) into the extended Hamilton principle
yields

0¼
Z t

0
δT�δΠþδWncð Þdt

¼
Z t

0

Z a

�a

Z b

�b
�ρh €wþM1xxþM2yyþ2M6xy
�(

þ ~Q þkðu�w0Þ
h i

δðx; yÞ


δwdxdy

)
dt

~Q � Qx ¼ ε1=2
1 �Qx ¼ � ε1=2

1

	 

ε2þ Qy ¼ ε2=2

2 �Qy ¼ � ε2=2
2

	 

ε1; ε1; ε2 � 0

ð13Þ
where δ x; yð Þ is a 2D Dirac delta function, and ~Q represents the
discontinuity of the internal transverse shear force at the absorber
location. Setting the coefficient of δw to zero yields the plate's
governing equation as

�ρh €wþM1xxþM2yyþ2M6xyþ ~Q þkðu�w0Þ
h i

δðx; yÞ ¼ 0 ð14Þ

The governing equation of the vibration absorber can be readily
obtained from Newton's second law as

m €u¼ k w0�uð Þ ð15Þ

Integration of Eq. (14) across the upper plate gives

0¼
Z a

�a

Z b

�b
�ρh €wþM1xxþM2yyþ2M6xyþ ~Q þkðu�w0Þ

h i
δðx; yÞ

n o
dxdy

¼
Z a

�a

Z b

�b
�ρh €w
� �

dydxþ
Z a

�a
M2yþM6x
� �y ¼ b

y ¼ �bdx

þ
Z b

�b
M1xþM6y
� �x ¼ a

x ¼ �adyþkðu�w0Þ ð16Þ

Note that ~Q is canceled out. Eq. (16) is equivalent to treating
the upper plate as a rigid body moving at an acceleration averaged
over the 2a� 2b area and subject to transverse shear forces on the

four edges and a concentrated center force from the absorber. In
other words, it is treated as a dynamically equivalent 2-DOF
system (i.e., the plate and the absorber), but the plate's equivalent
dynamic mass is deformation-dependent. If the bottom plate's
displacement in Fig. 3b is allowed to be different from that of the
top plate, the problem can be similarly analyzed but the number of
DOFs increases from two to three.

If a single-frequency 2D elastic wave propagates within an
infinite metamaterial plate made of many of the above analyzed
unit cell (see Fig. 3b), the plate's displacement w and the
absorber's displacement u can be assumed to have the following
forms:

w¼ pej αxþβy�ωtð Þ; u¼ qe� jωt ð17Þ
where α � 2π=λ1

� �
and β � 2π=λ2

� �
are wavenumbers along the x

and y directions with λ1 and λ2 being the corresponding wave
lengths, ω is the wave frequency, and p and q are displacement
amplitudes. Substituting Eq. (17) into Eqs. (15) and (16) and
rewriting the results in a matrix form gives

sin aαð Þ sin bβð Þ
αβ 4ρhω2�4D α2þβ2

� �2h i
�k k

k mω2�k

2
4

3
5 p

q

( )
¼ 0 ð18Þ

To have non-zero solutions to the eigenvalue problem shown in
Eq. (18), the determinant of the matrix needs to be zero and hence
the dispersion equation that relates ω to α and β (i.e., the 2D wave
vector) is obtained as

mω2�k
� � 4 sin aαð Þ sin bβð Þ

αβ
ρhω2�D α2þβ2

� �2h i
�k

)
�k2 ¼ 0

(
ð19Þ

if ω is assumed to be real and positive, solving Eq. (19) yields the
two solutions of ω in terms of α and β (i.e., dispersion surfaces) as
shown in Fig. 4, where we choose

2a¼ 0:25m; 2b¼ 0:05m; h¼ 0:015 m; m¼ 75 g;
ffiffiffiffiffiffiffiffiffi
k=m

p
¼ 500 Hz

Young's modulus : E¼ 72:4 GPa;

Poisson ratio : ν¼ 0:33; mass density : ρ¼ 2800 kg=m3

Fig. 4(b) shows the front view of Fig. 4(a). There is a stopband
between 500 Hz and 534.5 Hz (the gray band in Fig. 4(b))
where no wave can propagate forward. The upper bound of the
stopband is obtained from the upper dispersion surface with
α andβ-0 and the lower bound from the lower dispersion surface
with α andβ-1 as.

Stopband¼
ffiffiffiffiffiffiffiffiffi
k=m

q
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=mþk= 4abhρð Þ

q �
ð20Þ

where 4abhρ is the mass of the plate's unit cell. Eq. (20) shows that
the stopband's width can be increased by reducing the ratio
4abhρ=m. However, a small 4abhρ=m value means a big absorber

k

2b
h

w0

w0

ux

y
w(x,y)

2m

k

2b
h

2b

2a

2b 2b

Fig. 3. A unit cell of the metamaterial plate: (a) front view, and (b) perspective view.
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mass, which is bad for design because the absorbers are too heavy.
The stopband is just right above the absorber's local resonance
frequency (i.e.,

ffiffiffiffiffiffiffiffiffi
k=m

p
) because the absorber's resonant vibration

generates a significant out-of-phase inertial force to counteract the
plate's internal shear force, straighten the plate, and stop wave
propagation. This is analogous to the working mechanism of the
2-DOF mass-on-mass system shown in Fig. 1(a). If proper damping
is added to the vibration absorbers, energy of elastic waves with
frequencies within the stopband can be efficiently absorbed into
the absorbers and damped out. Proper selection and distribution
of vibration absorbers with different local resonant frequencies
will enable design of broad-band waveguides. However, this
dispersion analysis is only valid for infinite plates. For finite plates,
finite-element modeling of the whole metamaterial plate is
needed, as shown next.

4. Finite-element modeling and frequency response analysis of
metamaterial plates

One important application of metamaterials is for absorption/
attenuation of destructive propagating waves in a plate caused by
earthquake or explosion. For elastic waves, an appropriately
designed metamaterial-based plate in a structural system (e.g., a
building with several walls) can attenuate them, guide them away
from main structural components (e.g., pillars in a wall), and/or
delay them from reaching main components before being signifi-
cantly attenuated by vibration absorbers. Then, the structural
system's main components can survive although some secondary
components may be damaged. To demonstrate the concept we
consider the metamaterial plate shown in Fig. 5, which has the
following dimensions and material properties:

Each plate : La ¼ 5 m along x; Lb ¼ 3 m along y; h¼ 1:5 cm

E¼ 72:4 GPa; ν¼ 0:33; ρ¼ 2800 kg=m3

Distance between top and bottom plates : H¼ 20 cm

Absorbers : 2m¼ 0:15 kg;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k=2m

q
¼ 500 Hz

The metamaterial plate consists of two isotropic plates and
mass-spring subsystems and is located between two hinged vertical
pillars at x¼0 and 5 m. The total mass of the subsystems is 11.5% of
the total mass of the metamaterial plate. The same harmonic
excitation force with an amplitude of 100 kN is applied at x¼5 cm
and y¼1.5 m (i.e., the green dot in Fig. 5(b)) on both plates. Each
plate is modeled by 100�12 four-node rectangular conforming

plate elements with four DOFs (w; wxð � ∂w=∂xÞ; wy and wxy) at
each node. Because the wave propagation along x is of great interest
here, fine meshes are used along x. The vibration absorbers are
between the two plates and are attached to the plate elements'
nodes. However, there are no absorbers on the two free edges at
y¼0 and 3 m. The unit cell here has the same size and parameters
as those used in the dispersion analysis presented in Fig. 4. Based on
the dispersion analysis presented in the previous section for an
infinite plate, a stopband between 500 Hz and 534.5 Hz exists if the
vibration absorbers are tuned to have

ffiffiffiffiffiffiffiffiffi
k=m

p
¼ 500 Hz and the

boundary effect is neglected.
The steady-state response of a metamaterial plate under a

harmonic excitation can be predicted by frequency response
analysis (FRA). Although the displacements of the top and bottom
plates can be different under a general excitation, we consider
here that the same harmonic excitation is applied on the two
plates at the same location. Hence, the two plates have the same

Π

Χ Γ

Μ

500-534.5 Hz

(1/m)α

(1/m)α
0 0

(1/m)β

Fig. 4. Dispersion surfaces and stopband: (a) dispersion surfaces, and (b) stopband (gray rectangle).

centerline

Fig. 5. A metamaterial plate with two edge hinged: (a) a 3D model, and (b) a finite-
element model.(For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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motion for this case here. Two representative frequency response
functions (FRFs) of the metamaterial plate are shown in Fig. 6. The
black dotted lines are for the metamaterial plate without vibration
absorbers (setting m¼0) and are plotted for reference. The red
lines show FRFs of the plate with a low damping ratio ς¼0.0001

for each vibration absorber. After increasing the damping ratio to
0.01, FRFs are shown by the blue lines. The red lines show a
stopband to the right side of 500 Hz, as predicted by dispersion
analysis. When the excitation frequency approaches the stopband,
the vibration absorbers are close to resonant vibration and many
response peaks appear around the stopband. Fortunately, these
response peaks can be lowered and smoothed by increasing the
damping of the vibration absorbers. Damping in vibration absor-
bers can efficiently lower the response in low-frequency areas and
broaden the stopband at the same time, as shown by the blue lines
in Fig. 6. In other words, a metamaterial plate with high damping
absorbers can stop propagating high-frequency elastic waves
within the stopband, and it can also suppress standing low-
frequency vibrations below the stopband, which is different from
a metamaterial beam ([9]). These characteristics are very favorable
for designing metamaterial plates for both elastic wave absorption
and structural vibration suppression. Unfortunately, high damping
does not significantly reduce the response in areas of frequencies
higher than the stopband, and it often increases the transient time
during startup and shutdown of the excitation. This characteristic
may decrease the efficiency of or even disable the absorbers. To
examine this phenomenon and to determine an appropriate
damping value for vibration absorbers, transient analysis by direct
numerical integration of the finite-element equations is needed, as
shown next.

The above results from FRA give information about the steady-
state performance of the metamaterial plate. But how an elastic
wave propagates during the transient period and how the tran-
sient parts are damped out need to be examined through transient
analysis. If the natural frequency of vibration absorbers is tuned to
be 500 Hz, a constant damping ratio of 0.01 is used for each

=0.0001ς =0.01ς
no vibration absorbersFR
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B
)
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F 
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)

=0.0001ς =0.01ς no vibration absorbers

Fig. 6. Frequency response functions of the metamaterial plate: (a) response at
x¼0.5La and y¼0.5Lb, and (b) response at x¼0.8La and y¼0.5Lb.(For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 7. Transient analysis under ω¼600 Hz: (a) vibrations of nodes at x¼1 m, 2.5 m,
4 m on the centerline, (b) ODSs from direct numerical integration, and (c) ODSs
from FRA.
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Fig. 8. Transient analysis under ω¼400 Hz: (a) vibrations of nodes at x¼1 m,
2.5 m, 4 m on the centerline, (b) ODSs from direct numerical integration,
and (c) ODSs from FRA.
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vibration absorber, the external excitation frequency ω is set at
600 Hz, and a time step Δt ¼ 0:0001 s is used for numerical
integration, Fig. 7(a) shows the transient vibrations of nodes at
x¼1 m, 2.5 m and 4 m on the centerline (y¼1.5 m, see Fig. 5(b)).
Note that, when the excitation starts, the wave propagates through

the surrounding media and passes the nodes at x¼1 m, 2.5 m, 4 m
on the centerline. It takes about 0.005 s for the wave to reach the
node at x¼4 m and hence the wave speed is about 800 m/s. A
steady state is reached around 0.1 s. Fig. 7(b) shows the opera-
tional deflection shapes (ODSs) of the plate and vibration absor-
bers on the centerline (y¼1.5 m) when the node at x¼1.5 m rea-
ches its maximum displacement around t¼0.095 s (i.e., the end of
numerical integration). Because the excitation frequency is far
away from the stopband (500 Hz–534.5 Hz), the wave can propa-
gate forward as shown in Fig. 7(b). However, Fig. 7(a) and (b)
shows that the influences of damping and boundary conditions are
significant because the plate's vibration amplitude decreases as
the wave propagates forward and the wave is reflected back after
reaching the right-side boundary. More simulations reveal that
influences of damping and boundary conditions are strong when
the excitation frequency is around the first few natural frequencies
of the structure, which agrees with the results shown in Fig. 6.
Because the excitation frequency (600 Hz) is higher than the local
resonant frequency of vibration absorbers, the system vibrates in
an optical mode, i.e., motions of the plate and vibration absorbers
are 1801 out of phase. Fig. 7(c) shows the ODS from FRA for
comparison. Note that Fig. 7(b) agrees fairly well with Fig. 7(c),
except some subtle differences near the right boundary. In other
words, it confirms that the metamaterial plate can reach a steady
state within 0.1 s (about 60 excitation periods).

Similar to Fig. 7, Fig. 8 shows the results under a harmonic
excitation at ω¼400 Hz. Because the excitation frequency is lower
than the local resonant frequency of vibration absorbers, the
structure vibrates in an acoustic mode, i.e., the wall and the
vibration absorbers move in phase. It takes about 0.1 s (40
excitation periods) for the structure to reach a steady state. One
should note that, although the excitation frequency is much lower
than the stopband, Fig. 8(b) shows that the vibration absorbers
still can attenuate the wave. This is because the stopband obtained
from dispersion analysis is based the assumptions of no damping
and no boundary (i.e., an infinite plate). The FRFs shown in Fig. 6
include the influences of boundaries and damping, and they show
that the structure should have a small vibration amplitude at
ω¼400 Hz. Fig. 9 shows the results under a harmonic excitation at
ω¼350 Hz. The vibration absorbers move in phase with the wall
(i.e., acoustic mode) and cannot stop the wave propagation, which
agrees with the dispersion analysis.
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Fig. 9. Transient analysis under ω¼350 Hz: (a) vibrations of nodes at x¼1 m,
2.5 m, 4 m on the centerline, (b) ODSs from direct numerical integration,
and (c) ODSs from FRA.
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Fig. 10. Transient analysis under ω¼510 Hz: (a) vibrations of nodes at x¼1 m, 2.5 m, 4 m on the centerline, (b) ODSs of the plate's centerline from direct numerical
integration, and (c) ODSs of the whole plate (top) and absorbers (bottom).
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The case with ω¼510 Hz (within the stopband) is shown in
Fig. 10. It takes about 0.1 s (51 excitation periods) to reach the steady
state. Because the excitation frequency falls within the stopband,

both the wall and vibration absorbers at x42 m have almost no
vibration. The plate and vibration absorbers work in a mixed mode
(containing both optical and acoustic modes). Fig. 10(c) depicts the
ODSs of the plate (top plot) and absorbers (bottom plot). Displace-
ments of absorbers are measured relative to the average displace-
ment of the top and bottom plates. Fig. 11 shows the distributions of
shear force intensities along the centerline of the structure when the
structure reaches the steady state. The shear force intensities on the
yz and xz cross-sections are denoted by Q1 and Q2, respectively.
Because waves on the plate's centerline at y¼1.5 m primarily
propagate along the x axis, Q1 is much larger than Q2, as shown in
Fig. 11(b) and (c). Due to the concentrated excitation force, Q1 and Q2

at x¼0.05 m have large magnitudes and significant discontinuity.
The vertical broken red lines in Fig. 11(a) and (b) indicate that peak
internal shear forces always occur around where vibration absorbers
move opposite to the plate with peak amplitudes. In other words,
the inertial forces from the vibration absorbers in resonant vibration
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Fig. 11. ODSs and internal shear forces along the centerline: (a) ODSs, (b) shear
force intensity Q1, and (c) shear force intensity Q2.(For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 12. A low-frequency metamaterial plate: (a) finite-element mesh, and (b) distribution of vibration absorbers of different resonant frequencies.(For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

=0.0001ς =0.01ς no vibration absorbers=0.001ς

=0.0001ς =0.01ς no vibration absorbers=0.001ς

Fig. 13. FRFs of the low-frequency metamaterial plate with different damping
ratios for vibration absorbers: (a) the top node at x¼0.25 m and y¼0.5 m , and
(b) the corner node at x¼0,0.5 m and y¼0.5 m.(For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)
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balance out the plate's internal shear forces and straighten the plate
to stop the wave propagation. This is the main working mechanism
of metamaterial plates, rather than the concept of negative mass
and/or stiffness as for metamaterials bars [8].

5. Design for low-frequency vibration suppression

Waves in metamaterial plates generated by low-frequency
excitation are strongly affected by absorbers' resonant frequencies,
damping ratios and locations as well as the plate's boundary
conditions and low-order natural frequencies and mode shapes.,
damping ratios, location and distance between the vibration

absorbers, vibration modes of the structures etc. Therefore differ-
ent structures under different working conditions should be taken
care of differently. By selecting appropriate masses and springs for
vibration absorbers and properly locating them on the metama-
terial plate, one can design a low-frequency metamaterial plate
with a wide stopband and the vibration of the structure can be
suppressed. In order to avoid adding too much mass to the original
structure, the masses are designed to be 1.5 g for each vibration
absorbers. Because the total mass of absorbers is required to be
around 10% of the metamaterial plate mass, the mass of the
vibration absorbers is maintained constant and the spring con-
stants are adjusted to change the natural frequency of the vibra-
tion absorbers. In most cases, it is not necessary to put the

Fig. 14. FRFs of the low-frequency metamaterial plate without vibration absorbers: (a)–(d) single-frequency excitations around 10 Hz, and (e)–(h) single-frequency
excitations around 80 Hz.
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vibration absorbers uniformly across the plates. A metamaterial
plate for low-frequency vibration suppression is shown in Fig. 12.
The metamaterial plate consists of two isotropic plates and mass-
spring subsystems are located between the two plates (see Fig. 2).
Clamped-free-free-free boundary conditions are considered here.
If not otherwise stated, the material properties and dimensions of
the metamaterial plate are

Each plate : 0:5 m along x; 0:5 m along y; h¼ 3:5 mm

E¼ 72:4 GPa; ν¼ 0:33; ρ¼ 2800 kg=m3

Distance between top and bottom plates : H¼ 5 cm

Absorbers mass : 2m¼ 1:5 g

Because the excitation location only slightly affects a vibration
mode shape around a plate's resonant frequency, a harmonic force
with amplitude of 50 N is applied at the plate's center area (i.e.,
green dots in Fig. 12(a)) on both isotropic plates. In order to find the
peak response of the metamaterial plate and appropriately arrange/
design the locations and resonant frequencies of vibration absor-
bers, frequency response analysis (FRA) on the metamaterial plate
without vibration absorbers should be conducted first. As shown in
Fig. 12(a), 30�30 rectangular conforming plate elements with four
DOFs (w; wx; wy and wxy) at each node are used. The dotted
black lines in Fig. 13 represent the FRFs of the top and corner nodes
(see Fig. 12(b)) of the metamaterial plate without vibration absor-
bers (setting m¼0). The first natural frequency is around 10 Hz
(called the low band hereafter) and the second and third natural
frequencies are around 75–95 Hz (called the high band hereafter).
Fig. 14(a)–(d) and (e)–(h) shows the ODSs under an excitation
frequency around the low and high bands, respectively. They all

show large vibration amplitudes, but later simulations will show
that vibrations around the low band can be effectively suppressed
by adding damping to absorbers.

The ODS at 75 Hz in Fig. 14(e) shows that large vibration
amplitudes appear around the three free edges, and the ODS at
90 Hz in Fig. 14(h) shows that large amplitudes appear around the
two free corners and the central part of the metamaterial plate.
Therefore, the first group of vibration absorbers with a resonant
frequency of 78 Hz (i.e., green dots in Fig. 12(b)) is placed around
the three free edges, and the second group of absorbers with a
resonant frequency of 93 Hz (i.e., blue dots in Fig. 12(b)) is placed
around the center and the two free corners. After adding these two
groups of absorbers, FRA is conducted again and results show that the
central part under an excitation frequency of 70 Hz has a large
vibration amplitude. Therefore, a third group of absorbers with a
resonant frequency of 68 Hz (i.e., cyan dots in Fig. 12(b)) is placed
around the center. After adding the three groups of absorbers, the total
mass of the vibration absorbers is 13% of the plate's mass. The red lines
in Fig. 13 show that, usingς¼ 0:0001 for vibration absorbers, the
plate's vibration amplitude around 80 Hz is significantly reduced.
Fig. 15(a) compares the ODSs of the plate under a 90 Hz excitation
without and with vibration absorbers, and Fig. 15(b) shows the results
under a 95 Hz excitation. Apparently, the significant vibration suppres-
sion is due to the vibration absorbers having appropriately tuned local
resonant frequencies and locations. In other words, it is caused by the
existence of a stopband around 75–95 Hz, as shown in Fig. 13.

When ς¼ 0:01 is used for vibration absorbers, the blue lines in
Fig. 13 show that, although the response amplitude around 10 Hz
is well reduced but the response amplitude around 80 Hz drama-
tically increases from that with ς¼ 0:0001. In other words, the
stopband effect is destroyed by the high damping of vibration

Fig. 15. ODSs of the metamaterial plate without (left) and with (right) vibration absorbers with ς¼0.0001: (a) 90 Hz excitation, and (b) 95 Hz excitation.
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absorbers. This is because the high damping prevents the vibration
energy from transferring into the vibration absorbers. Hence, a
proper damping value must be determined in order to keep the
stopband effect and remain the capability of suppressing low-band
vibrations. With the use of ς¼ 0:001, the magenta lines in Fig. 13
show that both response amplitudes around low and high bands
are significantly reduced. Hence the following guidelines for
designing a low-frequency metamaterial plate are proposed:
(1) conducting FRA on a proposed metamaterial plate without
vibration absorbers, (2) determining the resonant frequencies and
locations of vibration absorbers based on the first few natural
frequencies and mode shapes of the plate, (3) conducting FRA on
the metamaterial plate with added vibration absorbers and mak-
ing improvement if necessary, and (4) adding appropriate damp-
ing to the vibration absorbers.

In order to better understand how different dampings affect
performance of the low-frequency metamaterial plate shown in
Fig. 12(b), transient analysis by direct numerical integration is
conducted. Fig. 16(a) shows the transient vibrations of the corner,
top and center nodes under a 90 Hz excitation and modal damping
ratios [23] ς1;…; ςn ¼ 0:05 : ð0:005�0:05Þ= n�1ð Þ : 0:005 being used
for the top and bottom plates, where n is the total number of DOFs of
the finite-element model. Note that the first modal vibration around
10 Hz persists for a long while before being damped out although a
large modal damping ratio of 0.05 is used for the first mode. In other
words, the material damping of the structure itself is not efficient for
vibration suppression. Moreover, natural structural materials with
high material damping are not commonly available. On the other

hand, because vibration absorbers are discrete man-made mass-
spring subsystems, damping can be easily added and adjusted
according to practical needs. Fig. 16(b) shows the transient vibrations
when ς¼ 0:02 is used for each vibration absorber and no damping
for plates. It is obvious that the first modal vibration is quickly
damped out and a steady-state harmonic vibration at the excitation
frequency with an amplitude much less than that in Fig. 16(a) is
achieved within less than 0.6 s. Fig. 16(c) shows the transient
vibrations when ς¼ 0:02 is used for each vibration absorber and
the above modal damping ratios are used for the two plates. The
differences between Fig. 16(b) and (c) are small. This indicates that
the damping of the structure itself is not as efficient as the damping
of vibration absorbers.

6. Conclusions

This paper presents detailed modeling approach, analysis
methods, and guidelines for designing acoustic metamaterial
plates for both high-frequency elastic wave absorption and low-
frequency structural vibration suppression. The design analysis
includes analytical dispersion analysis, finite-element modeling,
frequency response analysis, and direct numerical integration of
finite-element equations. Acoustic metamaterial plates with inte-
grated mass-spring subsystems are shown to be based on the
concept of conventional vibration absorbers. The key working
mechanism is that the local resonant vibration excited by the
incoming elastic wave absorbs the vibration energy and creates a
concentrated force to straighten the plate and attenuate/stop the
propagating wave. Numerical results reveal that the stopband's
location on the frequency axis is determined by the local resonant
frequency of absorbers, and the stopband's width is determined by
the absorber-mass/unit-plate-cell-mass ratio. Increase of absor-
bers' damping can increase the stopband's width and reduce low-
frequency vibration amplitudes, but too much damping may
deactivate the stopband effect. Increase of the plate's material
damping through the use of modal damping ratios can also
achieve the same effect, but it is far less efficient than absorbers'
damping. The resonant frequencies, locations and distributions of
absorbers need to be determined by considering the whole
metamaterial plate's low-order natural frequencies and mode
shapes under specific boundary conditions in order to have
efficient low-frequency vibration suppression for each specific
structural system.
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